Введение в физику сверхпроводимости

Рабочая программы дисциплины

Основные физические свойства сверхпроводников

№1, 2 часа.

Открытие сверхпроводимости. Основные понятия. Критическая температура. Критическое магнитное поле. Критический ток. Эффект Мейснера. Сверхпроводники I-го и II-го рода. Использование явления сверхпроводимости в науке и технике.

№2, 2 часа.

Нулевое электрическое сопротивление на постоянном токе. Способ измерения. Распределение тока в цепи: нормальный проводник — сверхпроводник — нормальный проводник. Сверхпроводящее кольцо в магнитном поле. Способы определения основных параметров сверхпроводников: критической температуры, критических полей у сверхпроводников І-го и ІІ-го рода, критического тока. Термоэлектрические явления в сверхпроводниках.

№3, 2 часа.

Физический смысл векторов В и Н. Система дифференциальных уравнений для В и Н. Размагничивающий фактор. Понятие эффективного поля. Магнитные моменты сверхпроводника. Промежуточное состояние в магнитном поле. Промежуточное состояние при разрушении сверхпроводимости током. Эффект Мейснера. Магнитные свойства идеального проводника и сверхпроводника. Поверхностный сверхпроводящий ток. Связь плотности поверхностного тока и индукции.

№4, 2 часа.

Линейная электродинамика Лондонов. Уравнения Лондонов. Пластина с током. Метод замещения. Лондоновская глубина проникновения магнитного поля в сверхпроводник. Нелинейная электродинамика Пиппарда. Локальный вариант нелокального уравнения Пиппарда. Пиппардовская глубина проникновения.

№5, 2 часа.

Первое начало термодинамики. Свободная энергия сверхпроводника. Энтропия сверх проводящего состояния. Электронная теплоемкость. Теплопроводность сверхпроводников.

Туннельные эффекты в сверхпроводниках

№6, 2 часа.

Экспериментальные данные. Поглощение ультразвука в сверхпроводниках. Оптическое поглощение. Квантовомеханическое туннелирование. Туннельная спектроскопия сверхпроводников. Вероятность туннелирования. Выражение для туннельного тока в нормальных металлах. I-V-диаграммы для туннельных контактов нормальный метал—сверхпроводник. Измерение функции спектральной плотности электронов при переходе в сверхпроводящее состояние. Энергетическая щель в спектре сверхпроводников.

№7, 2 часа.

Квантование магнитного потока. Канонический импульс электрона. Флуксон. Квант магнитного потока. Эффект Джозефсона. Стационарный эффект. Нестационарный эффект. Физическая природа эффекта Джозефсона. Квантовые интерферометры.

Микроскопическая теория сверхпроводимости Бардина-Купера-Шриффера

№8. 2 часа.

Изотопический эффект. Электрон-фононное взаимодействие. Виртуальные фононы. Притяжение между электронами. Неустойчивость системы фермионов при слабом притяжении между электронами. Куперовские пары. Длина когерентности. Волновая функция пары. Энергия связи электронов в куперовской паре.

№9, 2 часа.

Исходная модель БКШ. Основное состояние сверхпроводника. Функция распределения. для электронов сверхпроводника при T=0 К. Элементарные возбуждения вблизи основного состояния сверхпроводника. Закон дисперсии элементарных возбуждений.

№10, 2часа.

Энергетическая щель при T=0 K. Энергия связи пар. Анизотропия щели. Плотность состояний элементарных возбуждений. Изменение плотности состояний нормальных электронов при переходе металла в сверхпроводящее состояние при T=0 и $T\neq 0$.

№11, 2 часа

Зависимость энергетической щели от температуры. Критическая температура сверхпроводника. Связь критической температуры с величиной длины когерентности. Бездиссипативный ток. Значение критического тока. Сверхпроводники с сильной связью. Формула Макмиллана.

Теория сверхпроводимости Гинзбурга-Ландау

№12, 2 часа.

Однородный сверхпроводник в нулевом магнитном поле. Неоднородный сверхпроводник во внешнем поле. Уравнения Гинзбурга—Ландау. Градиентная инвариантность. Длина когерентности. Глубина проникновения магнитного поля в сверхпроводник. Эффект близости.

№13, 2 часа

Энергия границы раздела между нормальной и сверхпроводящей фазами. Тонкие пленки. Критическое поле и критический ток тонких пленок. Эффект Мейснера в теории БКШ и Гинзбурга—Ландау.

№14, 2 часа.

Смешанное состояние. Вихри Абрикосова. Энергия вихря. 1-е критическое поле. Взаимодействие вихрей. 2-е критическое поле. Третье критическое поле. Критический ток. Механизмы протекания тока.

№15, 2 часа

Критический ток во внешнем магнитном поле. Взаимодействие вихрей Абрикосова с центрами пиннинга и плоской поверхностью. Резистивное состояние сверхпроводника.

Высокотемпературная сверхпроводимость

№16, 2 часа.

Квазидвумерные и квазиодномерные системы. Усиление электрон—фононного взаимодействия в системах с переменной валентностью. Нефононные механизмы сверхпроводимости. d-спаривание. Высокотемпературная сверхпроводимость.

№17, 2 часа.

Высокотемпературные сверхпроводники на основе оксидов меди и их основные характеристики. Аномалии нормального состояния купратов. Температура сверхпроводящего перехода, длина когерентности и пространственная анизотропия. Природа электронного спаривания и симметрия сверхпроводящего параметра порядка в ВТСП купратах.

№18, 2 часа.

Двухщелевая сверхпроводимость в MgB_2 и твердых растворах на его основе. Пниктиды железа — новый класс высокотемпературных сверхпроводников на основе слоистых соединений железа. Сопоставление свойств ВТСП купратов, сверхпроводников на основе MgB_2 и железосодержащих сверхпроводников.

Введение в физику сверхпроводимости

Теоретический минимум (вопросы для самоконтроля)

2017 г.

- 1. Кто и в каком году открыл явление сверхпроводимости (с/п)?
- 2. Какой эксперимент, основанный на использовании внешнего магнитного поля, позволяет отличить сверхпроводник от гипотетического идеального проводника (с R = 0)?
- 3. Какие классы веществ, проявляющие с/п свойства, известны на данный момент?
- 4. Нарисуйте типичную для с/п зависимость R(T). Три способа определения критической $T_{\rm c}$.
- 5. Нарисуйте зависимости $H_c(T)$ и $n_S(T)$. Какими формулами они приближенно описываются?
- 6. Переходом какого рода является переход в с/п состояние?
- 7. Каков физический смысл параметров с/п состояния Δ_0 и ξ ?
- 8. Напишите уравнения Лондонов. Каков физический смысл λ_L ? Как связаны j_c и $H_c(0)$?
- 9. Чему равен радиус кора абрикосовского вихря? Чему равна и из чего складывается энергия одиночного абрикосовского вихря?
- 10. В чём заключается и что однозначно доказывает изотопический эффект у с/п?
- 11. Какое соотношение энергий описывает т.н. «приближение квазиклассичности» в БКШ?
- 12. Как меняется вид зависимости плотности электронных состояний от энергии N(E) и спектр возбуждений носителей E(p) при переходе металл c/n (при $T \to 0$)? Какие формулы описывают их в рамках теории БКШ?
- 13. Как вводятся константы электрон-фононного взаимодействия λ и кулоновского отталкивания μ^* ? В чём заключается перенормировка λ в приближении сильной связи? (Формулы.)
- 14. Какое выражение для с/п щели Δ_0 даёт теория БКШ (в пределе слабой связи)? Нарисуйте типичные зависимости $\Delta_0(\lambda)$ и $\Delta(T)$.
- 15. Какое выражение для T_c даёт теория Элиашберга (в случае сильной эл.-фононной связи)?
- 16. Как с/п щель Δ_0 соотносится с такими физическими величинами как T_c , ξ_0 , v_c , j_c , H_c ?
- 17. Чему равна плотность энергии бозе-эйнштейновской конденсации?
- 18. Нарисуйте типичные зависимости теплопроводности и теплоёмкости с/п от температуры. Чему равна относительная величина скачка теплоёмкости?
- 19. Что такое характеристическое отношение в теории БКШ? Критерий Гинзбурга Ландау?
- 20. Как связаны параметры порядка теории БКШ и теории Гинзбурга Ландау? (Формула.)
- 21. Как связаны $\lambda_{\rm GL}$ и $H_{\rm c1}$ в теории Гинзбурга Ландау? Как $\lambda_{\rm GL}$ зависит от длины свободного пробега l и температуры? (Формулы.)
- 22. Как связаны $\xi_{\rm GL}$ и $H_{\rm c2}$ в теории Гинзбурга Ландау? Как $\xi_{\rm GL}$ зависит от длины свободного пробега l и температуры? (Формулы.)
- 23. Как связаны критические магнитные поля H_c , H_{cl} и H_{c2} друг с другом и с λ_{GL} , ξ_{GL} ?
- 24. Напишите уравнения Джозефсона, а также выражение Амбегаокара и Баратова.
- 25. Чему равен коэффициент пропорциональности между частотой и смещением в SIS-контакте? Как предельная частота сверхтока зависит от величины с/п щели Δ_0 ?

Основная литература для подготовки к экзамену

- 1. М. Тинкхам. Введение в сверхпроводимость. Атомиздат, Москва, 1980.
- 2. В. Буккель. Сверхпроводимость. Мир, Москва, 1975.
- 3. Д.Р. Тилли, Дж. Тилли. *Сверхтекучесть и сверхпроводимость*. Под ред. В.Л. Гинзбурга, Мир, Москва, 1977.
- 4. Н.Б. Брандт, В.А. Кульбачинский. *Квазичастицы в физике конденсированного состояния*. Физматлит, Москва, 2005.
- 5. В.Л. Гинзбург, Е.А. Андрюшин. Сверхпроводимость. Альфа-М, 2006.

Дополнительная литература для подготовки к экзамену

- 1. В.В. Шмидт. Введение в физику сверхпроводимости. МНЦМР, Москва, 2000.
- 2. П. Де Жен. Сверхпроводимость металлов и сплавов. Мир, Москва, 1968.
- 3. *Проблемы в теории сверхпроводимости*. Под ред. В.Л. Гинзбурга, Д.К. Киржница, Наука, Москва, 1977.
- 4. Журнал "Успехи физических наук" (УФН) том **174**, 2004:
 - А.А. Абрикосов. Сверхпроводники второго рода и вихревая решетка. Стр. 1234.
 - В.Л. Гинзбург. О сверхпроводимости и сверхтекучести. Стр. 1241.
- 5. Журнал "Успехи физических наук" (УФН) том **167**, 1997
 - В.Л. Гинзбург. Сверхпроводимость и сверхтекучесть. Стр. 429.

Перечень вопросов к экзамену (осенний семестр 2017-18 учебного года)

- 1. Критическая температура. Способы определения.
- 2. Критическое магнитное поле. Фазовая диаграмма сверхпроводника на плоскости *H*, *T*.
- 3. Нулевое сопротивление. Сопротивление переменному току. Сверхпроводящий контур в магнитном поле.
- 4. Эффект Мейсснера. Уравнения Лондонов. Критический ток в теории Лондонов.
- 5. Сверхпроводники І-го и ІІ-го рода.
- 6. Глубина проникновения магнитного поля в сверхпроводник. Критический ток и скорость. Сравнение выводов теории Лондонов и Гинзбурга—Ландау.
- 7. Термоэлектрические явления в сверхпроводниках. Электронная теплоёмкость.
- 8. Поглощение ультразвука и оптические свойства сверхпроводников.
- 9. Изотопический эффект. Отклонения в случае сильной электрон-фононной связи.
- 10. Основные допущения микроскопической теории Бардина-Купера-Шриффера (БКШ).
- 11. Электрон-фононное взаимодействие. Куперовские пары. Длина когерентности в БКШ.
- 12. Энергетическая щель в спектре сверхпроводника. Плотность состояний и закон дисперсии для элементарных возбуждений.

- 13. Параметр порядка сверхпроводящего состояния в БКШ. Его связь с $T_{\rm c}$ и длиной когерентности.
- 14. Основные выводы теории БКШ. Их коррекция в случае сильного электрон-фононного взаимодействия. Оценки максимально возможных T_c .
- 15. Зависимость энергии связи пары от температуры. Критическая температура $T_{\rm c}$ сверхпроводника и характеристическое отношение в теории БКШ.
- 16. Термодинамика сверхпроводников. Плотность энергии конденсации Бозе-Эйнштейна.
- 17. Теория сверхпроводимости Гинзбурга-Ландау. Основные уравнения и положения.
- 18. Длина когерентности и параметр порядка в теории Гинзбурга–Ландау. Их зависимость от T, l.
- 19. Сверхпроводники II-го рода. Вихри Абрикосова. Распределение магнитного поля и параметра порядка в одиночном абрикосовском вихре. Эффект близости.
- 20. Энергия границы раздела N- и S-фазы. Энергия вихревой линии, энергия керна абрикосовского вихря в сверхпроводнике II-го рода. Взаимодействие вихрей.
- 21. Критические магнитные поля H_c , H_{c1} и H_{c2} . Их связь друг с другом и величинами λ_{GL} и ξ_{GL} .
- 22. Фазовая когерентность электронной подсистемы в сверхпроводниках. Её проявления.
- 23. Эффект Джозефсона. Особенности вольтамперной характеристики SIS-контакта.
- 24. Эффект андреевского отражения. Особенности вольтамперной характеристики NS-контакта.
- 25. Квантование магнитного потока в сверхпроводящем кольце. СКВИДы.
- 26. Двухщелевая сверхпроводимость. Уравнения Москаленко-Сула. Особенности вольтамперной характеристики SIS-контакта на базе двухщелевого сверхпроводника.
- 27. Механизмы высокотемпературной сверхпроводимости, d-волновое спаривание, s^{\pm} -модель.
- 28. Структура и свойства ВТСП соединений на основе оксидов меди. Применение ВТСП.
- 29. Особенности соединения MgB_2 и твердых растворов на его основе. Применение ВТСП.
- 30. Физические свойства железосодержащих сверхпроводников. Применение ВТСП.

Задачи для самоконтроля

- 1. Для сверхпроводника, находящегося в пределе слабой связи, определить критическую скорость v_c сверхпроводящих электронов (из условия сверхпроводимости Ландау), если спектр элементарных возбуждений имеет вид $E_k = [\Delta^2 + {\epsilon_k}^2]^{1/2}$, щель $\Delta = 1.2 \cdot 10^{-16}$ эрг = 0.075 мэВ, ϵ_k энергия свободного электрона, отсчитанная от уровня Ферми, $k_F \approx 0.66 \cdot 10^8$ см⁻¹. Определить критическую температуру T_c и характерный линейный размер куперовской пары ξ_{C0} при условии, что длина свободного пробега $l \to \infty$ и l = 100 нм (в грязном пределе).
- 2. Сверхпроводящий индий ($T_c = 4.2 \text{ K}$, $v_F \approx 3.3 \cdot 10^8 \text{ см/c}$) находится в пределе сильной связи, при этом характеризуется параметром теории Гинзбурга–Ландау $\kappa = 0.1$. Глубина проникновения магнитного поля $\lambda_L = 800 \text{ Å}$ (при $T \to 0$). Найти критическую скорость сверхпроводящих электронов v_c , величину сверхпроводящей щели и характеристическое отношение теории БКШ. Определить характерный линейный размер куперовской пары ξ_{C0} при условии, что длина свободного пробега l = 200 нм.

- 3. Сверхпроводящая ртуть с $T_c = 4.15~K$ и параметром порядка $\Delta \approx 0.82~M$ жарактеризуется значением критического магнитного поля $H_c \approx 410~\mathrm{J}$ (при $T \to 0$). Определить характеристическое отношение теории БКШ. Из выражения для критического тока теории Лондонов и условия сверхпроводимости Ландау оценить критическую скорость v_c , взяв концентрацию электронов $n \approx 10^{23}~\mathrm{cm}^{-3}$. Оценить k_F и плотность энергии конденсации Бозе—Эйнштейна для ртути (при $T \to 0$).
- 4. Сверхпроводящий алюминий с $T_c \approx 1.17~K$ является БКШ-сверхпроводником (т.е. находится в пределе слабой связи) и характеризуется значением критического магнитного поля $H_c \approx 100~\mathrm{J}$ и лондоновской глубиной проникновения магнитного поля $\lambda_L = 500~\mathrm{Å}$ (при $T \to 0$). Оценить сверхпроводящий параметр порядка Δ ; длину когерентности ξ_0 в чистом пределе $(l \to \infty)$, а также ξ_{C0} для случая $l = 200~\mathrm{hm}$; скорость Ферми v_F для электронов и характеристический параметр теории Гинзбурга–Ландау κ .

(Квант потока $\Phi_0 = h/2e = 2.07 \times 10^{-15} \text{ B}$ б.)

5. Сверхпроводящий ниобий с $T_c \approx 9.3$ К и параметром порядка $\Delta \approx 1.6$ мэВ характеризуется значением критического магнитного поля $H_{c2} \approx 2000$ Э и лондоновской глубиной проникновения магнитного поля $\lambda_L = 470$ Å (при $T \to 0$). Оценить характеристическое отношение теории БКШ и характеристический параметр теории Гинзбурга—Ландау κ ; величину H_{c1} , длину когерентности ξ_0 в чистом пределе ($l \to \infty$), а также ξ_{C0} для случая l = 80 нм и скорость Ферми ν_F для электронов.

(Квант потока $\Phi_0 = h/2e = 2,07 \times 10^{-15} \text{ Bf} = 2,07 \times 10^{-7} \text{ Mkc.}$)

- 6. Найти энергию связи и характерный линейный размер куперовской пары ξ_{C0} (при $l \to \infty$, а также для случая l = 100 нм) для «стандартного» БКШ-сверхпроводника в пределе слабой связи с $T_c = 0.3$ К. Нормальная плотность состояний $N(E_F) = 0.3$ эВ $^{-1}$ и $v_F = 3.0 \cdot 10^7$ см/с. Определить плотность энергии конденсации Бозе—Эйнштейна (при $T \to 0$) и критическое магнитное поле $H_c(0)$. Оценить БКШ-константу электрон-фононной связи V, если энергия Дебая для этого сверхпроводника $\theta_D \approx 20$ мэВ. Для джозефсоновского контакта на базе этого сверхпроводника (с нормальным сопротивлением $R_N(T_c) = 20$ Ом) оценить максимальную амплитуду и частоту джозефсоновского сверхтока.
- 7. Матричный элемент силы электрон-фононного взаимодействия сверхпроводника, находящегося в пределе слабой связи, составляет V=0.8 эВ. В этом металле нормальная плотность состояний $N(E_F)=0.2$ эВ $^{-1}$, скорость $\nu_F=3.0\cdot 10^7$ см/с, а энергия Дебая $\theta_D\approx 20$ мэВ. Определить плотность энергии конденсации Бозе–Эйнштейна (при $T\to 0$) и критическое магнитное поле $H_c(0)$. Найти энергию связи и характерный линейный размер куперовской пары ξ_{C0} (при $l\to\infty$, а также для случая l=100 нм). Определить критическую T_c , характеристическое отношение теории БКШ. Для джозефсоновского

контакта на базе этого сверхпроводника (с нормальным сопротивлением $R_N(T_c) = 10 \text{ Om}$) оценить максимальную амплитуду и частоту джозефсоновского сверхтока.

- 8. Для джозефсоновского контакта на базе двухщелевого сверхпроводника MgB_2 оценить максимально возможную амплитуду и частоту джозефсоновского сверхтока при $T \to 0$. $T_c = 38 \text{ K}$, $\lambda_1 = 0.84$, $\lambda_2 = 0.415$, $\mu_1 = 0.11$, $\mu_2 = 0.09$, $\omega_c \approx 70 \text{ мэВ}$, $R_N(T_c) = 4 \text{ Ом}$, считать, что проводимости в обеих зонах близки $\sigma_1 \approx \sigma_2$. Определить отношение амплитуд параметров порядка в зонах Δ_1/Δ_2 . Если было бы возможно «выключить» сверхпроводимость в ведущей зоне (т.е. ниже T_c она бы оставалась металлической), то у получившегося гипотетического материала характеристическое отношение теории БКШ было бы равно 3.52. Оценить, какой T_c обладал бы такой материал (с одной малой щелью Δ_2)?
- 9. Из зависимости для глубины проникновения магнитного поля λ_L от длины свободного пробега электронов l (в металлическом состоянии) $\lambda_L(l)/\lambda_L(\infty)$, которое даётся в теории Гинзбурга—Ландау, и соотношения Пиппарда для длины когерентности $\xi_0(l)$ получить зависимость $\xi_{GL}(l)$ в «грязном» пределе $l << \xi$ (принять $T << T_c$). Для высокодефектного образца (алюминиевого) сверхпроводника $\xi_0 \approx 1$ мкм, $l \approx 0.1$ мкм, характеристический параметр теории Гинзбурга—Ландау $\kappa \approx 0.05$. Оценить ξ_{GL} и λ_L при $T << T_c$.
- 10. Сверхпроводящий сплав переходит в нормальное состояние при величине второго критического магнитного поля $H_{c2} = 150 \text{ к}$ Э и характеризуется параметром теории Гинзбурга—Ландау равным 96. Найти энергию одиночного вихря и сравнить ее с энергией нормальной сердцевины вихря.